Characterization of Carbonic Anhydrase 9 in the Alimentary Canal of Aedes aegypti and Its Relationship to Homologous Mosquito Carbonic Anhydrases
نویسندگان
چکیده
In the mosquito midgut, luminal pH regulation and cellular ion transport processes are important for the digestion of food and maintenance of cellular homeostasis. pH regulation in the mosquito gut is affected by the vectorial movement of the principal ions including bicarbonate/carbonate and protons. As in all metazoans, mosquitoes employ the product of aerobic metabolism carbon dioxide in its bicarbonate/carbonate form as one of the major buffers of cellular and extracellular pH. The conversion of metabolic carbon dioxide to bicarbonate/carbonate is accomplished by a family of enzymes encoded by the carbonic anhydrase gene family. This study characterizes Aedes aegypti carbonic anhydrases using bioinformatic, molecular, and immunohistochemical methods. Our analyses show that there are fourteen Aedes aegypti carbonic anhydrase genes, two of which are expressed as splice variants. The carbonic anhydrases were classified as either integral membrane, peripheral membrane, mitochondrial, secreted, or soluble cytoplasmic proteins. Using polymerase chain reaction and Western blotting, one of the carbonic anhydrases, Aedes aegypti carbonic anhydrase 9, was analyzed and found in each life stage, male/female pupae, male/female adults, and in the female posterior midgut. Next, carbonic anhydrase 9 was analyzed in larvae and adults using confocal microscopy and was detected in the midgut regions. According to our analyses, carbonic anhydrase 9 is a soluble cytoplasmic enzyme found in the alimentary canal of larvae and adults and is expressed throughout the life cycle of the mosquito. Based on previous physiological analyses of adults and larvae, it appears AeCA9 is one of the major carbonic anhydrases involved in producing bicarbonate/carbonate which is involved in pH regulation and ion transport processes in the alimentary canal. Detailed understanding of the molecular bases of ion homeostasis in mosquitoes will provide targets for novel mosquito control strategies into the new millennium.
منابع مشابه
Carbonic anhydrase in the midgut of larval Aedes aegypti: cloning, localization and inhibition.
The larval mosquito midgut exhibits one of the highest pH values known in a biological system. While the pH inside the posterior midgut and gastric caeca ranges between 7.0 and 8.0, the pH inside the anterior midgut is close to 11.0. Alkalization is likely to involve bicarbonate/carbonate ions. These ions are produced in vivo by the enzymatic action of carbonic anhydrase. The purpose of this st...
متن کاملExpression, purification, kinetic, and structural characterization of an alpha-class carbonic anhydrase from Aedes aegypti (AaCA1).
Carbonic anhydrases (CAs) are zinc-containing metalloenzymes that catalyze the interconversion of carbon dioxide and bicarbonate. The alpha-class CAs are found predominantly in vertebrates, but they are also expressed in insects like mosquitoes. Recently, an alpha-CA from the midgut of Aedes aegypti larvae (AaCA1) was identified, cloned, and subsequently shown to share high sequence homologous ...
متن کاملCarbonic anhydrases and anion transport in mosquito midgut pH regulation.
Mosquito larvae use a digestive strategy that is relatively rare in nature. The anterior half of the larval mosquito midgut has a luminal pH that ranges between 10.5 and 11.5. Most other organisms, both large and small, initiate digestion in an acid medium. The relative uniqueness of the highly alkaline digestive strategy has been a long-standing research focus in larval lepidopterans. More rec...
متن کاملToxicity and Physiological Actions of Carbonic Anhydrase Inhibitors to Aedes aegypti and Drosophila melanogaster
The physiological role of carbonic anhydrases in pH and ion regulation is crucial to insect survival. We examined the toxic and neurophysiological effects of five carbonic anhydrase inhibitors (CAIs) against Aedes aegypti. The 24 h larvicidal toxicities followed this rank order of potency: dichlorphenamide > methazolamide > acetazolamide = brinzolamide = dorzolamide. Larvicidal activity increas...
متن کاملDistribution of the carbonic anhydrase isoenzymes I, II, and VI in the human alimentary tract.
The distribution of carbonic anhydrase isoenzymes I, II, and VI was studied in the human alimentary tract using specific antibodies to human isoenzymes in conjunction with the immunoperoxidase technique to elucidate the physiological role and possible functional interplay of carbonic anhydrases (CAs) in alimentary canal functions. From the isoenzymes studied, CA II was found to be the most wide...
متن کامل